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Abstract: This paper studies two stochastic batch Markovian  arrival and batch Markovian service single server 

queue BMAP/BMSP/1 queue Models (A) and (B) with randomly varying k* distinct environments. The arrival 

process of the queue has matrix representation {Dm
i  : 0 ≤ m ≤ M} of order ki describing the BMAP and the 

service process has matrix representation {Sn
i  : 0 ≤ n ≤ N} of order k′i describing the BMSP respectively in the 

environment i for 1 ≤ i ≤ k*. Whenever the environment changes from i to j the arrival BMAP and service 

BMSP change from the i version to the j version with the exception of the first remaining arrival time and first 

remaining service time in the new environment start as per stationary probability vector of j version of the 

BMAP and of j version of the BMSP respectively for 1 ≤ i, j ≤  k*. The queue system has infinite storing 

capacity and the state space is identified as five dimensional one to apply Neuts’ matrix methods. In the 

environment i, the sizes of the arrivals and services are governed by the matrices Dm
i  and Sn

i , with respect to 

environment. The service process is stopped when the queue becomes empty and is started with initial 

probability vector of corresponding environment BMSP when the arrival occurs. Matrix partitioning method is 

used to study the models. In Model (A) the maximum of the arrival sizes is greater than the maximum of the 

service sizes and the infinitesimal generator is partitioned mostly as blocks of the sum of the products of BMAP 

arrival and BMSP service phases in the various environments times the maximum of the arrival sizes for 

analysis. In Model (B) the maximum of the arrival sizes is less than the maximum of the service sizes. The 

generator is partitioned mostly using blocks of the same sum-product of batch Markovian phases times the 

maximum of the service sizes. Block circulant matrix structure is noticed in the basic system generators. The 

stationary queue length probabilities, its expected values, its variances and probabilities of empty levels are 

derived for the two models using matrix methods. Numerical examples are presented for illustration.                                                                                                                                                                                             

 

Keywords:   Batch Arrivals, Batch Services, Block Circulant Matrix, Neuts Matrix Methods, Phase Type 

Distribution.      

                                                                                                  

I. INTRODUCTION 
In this paper two batch arrival and batch service BMAP/BMSP/1 queues with random environment 

have been studied using matrix geometric methods.  Numerical studies on matrix methods are presented by Bini, 

Latouche and Meini [1]. Multi server model has been of interest in Chakravarthy and Neuts [2].  Birth and death 

model has been analyzed by Gaver, Jacobs and Latouche [3]. Analytic methods are focused in Latouche and 

Ramaswami [4] and for matrix geometric methods one may refer Neuts [5]. For M/M/1 bulk queues with 

random environment models one may refer Rama Ganesan, Ramshankar and Ramanarayanan [6] and M/M/C 

bulk queues with random environment models are of interest in Sandhya, Sundar, Rama, Ramshankar and 

Ramanarayanan [7]. PH/PH/1 bulk queues without variation of environments have been treated by Ramshankar, 

Rama Ganesan and Ramanarayanan [8] and with variations of environment have been analyzed by 

Ramshankar,Rama, Sandhya, Sundar and Ramanarayanan [9]. BMAP/M/C queue with bulk service and random 

environment has been studied by Rama, Ramshankar, Sandhya, Sundar and Ramanarayanan [10]. The models 

considered here are general compared to existing models. Batch Markovian service process (BMSP) considered 

in this paper is similar to batch Markovian arrival process (BMAP) and BMAP has been studied by 

Lucantony[11] and has been analyzed further by Cordeiro and Kharoufch [12] . When the queue becomes empty 

the service process is stopped and it is started with starting probability vector when the arrivals occur in the 

empty queue. Usually bulk arrival models have M/G/1 upper-Heisenberg block matrix structure. The 

decomposition of a Toeplitz sub matrix of the infinitesimal generator is required to find the stationary 

probability vector and matrix geometric structures are rarely noted.  In such analysis the recurrence relation 

method to find the stationary probabilities is stopped at a certain level in most general cases using a terminating 

method very well explained by Qi-Ming He [13] and this stopping limitation of terminating method converts an 

infinite arrival system to a finite arrival one. In special cases generating function has been identified by Rama 
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and Ramanarayanan [14]. However the method of partitioning of the infinitesimal generator along with 

environment, BMAP phases and BMSP phases used in this paper is presenting matrix geometric solution for 

finite sized batch arrivals and batch services models. The M/PH/1 and PH/M/C queues with random 

environments have been studied by Usha [15] and [16] without bulk arrivals and bulk services. It has been 

noticed by Usha [15, 16] that when the environment changes the remaining arrival and service times are to be 

completed in the new environment. The residual arrival time and the residual service time distributions in the 

new environment are to be considered in the new environment at an arbitrary epoch since the spent arrival time 

and the spent service time have been in the previous environment with distinct sizes of PH phase. Further new 

arrival time and new service time from the start using initial PH distributions of the new environment cannot be 

considered since the arrival and the service have been partly completed in the previous environment indicating 

the stationary versions of the arrival and service distributions in the new environments are to be used for the 

completions of the residual arrival and service times in the new environment and on completion of the same the 

next arrival and service onwards they have initial versions of the PH distributions of the new environment. The 

stationary version of the distribution for residual time has been well explained in Qi-Ming He [13] where it is 

named as equilibrium PH distribution. Randomly varying environment BMAP/BMSP/1 queue models have not 

been treated so far at any depth.  

Two models (A) and (B) on BMAP/BMSP/1 bulk queue systems with infinite storage space for 

customers are studied here using the block partitioning method. Model (A) presents the case when M, the 

maximum of the arrival sizes of BMAP is bigger than N, the maximum of the service sizes of BMSP. In Model 

(B), its dual case N is bigger than M, is treated. In general in Queue models, the state space of the system has the 

first co-ordinate indicating the number of customers in the system but here the customers in the system are 

grouped and considered as members of blocks of sizes of the maximum for finding the rate matrix. Using the 

maximum of the batch arrival sizes and of the batch service sizes and grouping the customers as members of 

blocks in addition to coordinates of the arrival and service phases for partitioning the infinitesimal generator is a 

new approach in this area. The matrices appearing as the basic system generators in these two models due to 

block partitioned structure are seen as block circulant matrices. The paper is organized in the following manner. 

In sections II and III the stationary probability of the number of customers waiting for service, the expectation 

and the variance and the probability of empty queue are derived for these Models (A) and (B). In section IV 

numerical cases are presented to illustrate them.   

 

II. MODEL (A): MAXIMUM ARRIVAL SIZE M > MAXIMUM SERVICE SIZE N 
2.1Assumptions                                                                                                                                                              
(i)There are k* environments. The environment changes as per changes in a continuous time Markov chain with 

infinitesimal generator 𝑄1 of order k* with stationary probability vector π’. 

(ii)In the environment i for 1 ≤ i ≤ k*, the batch arrivals occur in accordance with Batch Markovian Arrival 

Process with matrix representation for the rates of batch sizes m given by the finite sequence {𝐷𝑚
𝑖 , 0 ≤ m ≤ 𝑀𝑖} 

with phase order 𝑘𝑖  where 𝐷0
𝑖  has negative diagonal elements and its other elements are non-negative; 𝐷𝑚

𝑖  has 

non-negative elements for 1 ≤ m ≤ 𝑀𝑖  where 𝑀𝑖  is the maximum batch arrival size in the environment i. Let 𝐷𝑖  

= 𝐷𝑚
𝑖𝑀𝑖

𝑚=0  and  𝜑𝑖  be the stationary probability vector of the generator matrix 𝐷𝑖  with  𝜑𝑖𝐷
𝑖  = 0 and 𝜑𝑖e = 1.                                                                                                                                                                                                                                                                                   

(iii) In the environment i for 1 ≤ i ≤ k*, when the queue length L is more than or equal to the maximum batch 

service size  𝑁𝑖 ,  (L ≥  𝑁𝑖) of the environment, the batch services occur in accordance with Batch Markovian 

Service Process with matrix representation for the rates of batch sizes n given by the finite sequence {𝑆𝑛
𝑖 , 0 ≤ n ≤ 

𝑁𝑖} with phase order 𝑘′𝑖  where 𝑆0
𝑖  has negative diagonal elements and its other elements are non-negative; 𝑆𝑛

𝑖  

has non-negative elements for 1 ≤ n ≤ 𝑁𝑖 . Let 𝑆𝑖  = 𝑆𝑛
𝑖𝑁𝑖

𝑛=0  and  𝛷𝑖  be the stationary probability vector of the 

generator matrix 𝑆𝑖  with  𝛷𝑖𝑆
𝑖  = 0 and 𝛷𝑖e = 1.                                                                                           

(iv)When n customers n < 𝑁𝑖  are waiting for service, then n’ customers are served with rate  𝑆𝑛
𝑖    for 1 ≤ n’ ≤ n-1 

and n customers are served with rate  𝑆𝑛
𝑖𝑁𝑖

𝑗=𝑛  =  𝑆𝑖 ,𝑛
′  which is a matrix of order 𝑘′𝑖 .                                     

(v)The BMSP service process is stopped when the queue becomes empty and is started in the environment i for                              

1 ≤ i ≤ k*with initial probability vector 𝛽𝑖of the i version BMSP when the arrival occurs.  

(v) When the environment changes from i to j for 1 ≤ i, j ≤ k*, the arrival process and service process in the new 

environment j start as per stationary (equilibrium) probability vectors 𝜑𝑗  of 𝐷𝑗 and  𝜙𝑗  of  𝑆𝑗  respectively of the j 
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versions of arrival process BMAP, namely, { 𝐷𝑚
𝑗

, 0 ≤ m ≤ 𝑀𝑗 } and of the j version of the service process, 

namely, BMSP {𝑆𝑛
𝑖 , 0 ≤ n ≤ 𝑁𝑖} in the new environment. 

 (vii) The maximum batch arrival size of all BMAPs’, M= ma𝑥1≤𝑖≤𝑘∗𝑀𝑖  is greater than the maximum batch 

service size   N= ma𝑥1≤𝑖≤𝑘∗𝑁𝑖 .                                                                                                                                                                           

2.2.Analysis                                                                                                                                                                                        

The state of the system of the continuous time Markov chain X (t) under consideration is presented as follows.                                                                                                                                                                                                  

X(t) = {(0, i, j) : for 1 ≤ i ≤ k* and  1 ≤ j ≤ 𝑘𝑖)} U {(0, k, i, j, j’) ; for 1 ≤ k ≤ M-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 

𝑘′𝑖} U {(n, k, i, j, j’): for 0 ≤ k ≤ M-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 𝑘′𝑖  and n ≥ 1}. (1)                                                                                                                                                                                                                                                     

The chain is in the state (0, i, j) when the number of customers in the queue is 0, the environment state is i for 1 

≤ i ≤ k* and the arrival BMAP phase is j for 1 ≤ j ≤ 𝑘𝑖 . The chain is in the state (0, k, i, j, j’) when the number of 

customers is k for 1 ≤ k ≤ M-1, the environment state is i for 1 ≤ i ≤ k*, the arrival BMAP phase is j for 1 ≤ j 

≤ 𝑘𝑖  and the service BMSP phase is j’ for 1 ≤ j’ ≤  𝑘′𝑖 . The chain is in the state (n, k, i, j, j’) when the number of 

customers in the queue is   n M + k, for 0 ≤ k ≤ M-1 and 1 ≤ n < ∞, the environment state is i for 1 ≤ i ≤ k*, the 

arrival BMAP phase is j for 1 ≤ j ≤ 𝑘𝑖  and the service BMSP phase is j’ for 1 ≤ j’ ≤ 𝑘′𝑖 . When the number of 

customers waiting in the system is r, then r is identified with (n, k) where r on division by M gives n as the 

quotient and k as the remainder. The chain X (t) describing model has the infinitesimal generator 𝑄𝐴  of infinite 

order which can be presented in block partitioned form given below. 

𝑄𝐴=

 
 
 
 
 
 
𝐵1 𝐵0 0 0 . . . ⋯
𝐵2 𝐴1 𝐴0 0 . . . ⋯
0 𝐴2 𝐴1 𝐴0 0 . . ⋯
0 0 𝐴2 𝐴1 𝐴0 0 . ⋯
0 0 0 𝐴2 𝐴1 𝐴0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 

 
 
 
 
 

                                                                                                        (2)                                                                                           

 In (2) the states of the matrices are listed lexicographically as 0, 1, 2, 3, …. For partition purpose the zero states 

in the first two sets given in (1) are combined. The vector 0 is of type 1 x [ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑀 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖 ] and                                         

0=((0,1,1),(0,1,2),(0,1,3)…(0,1, 𝑘1),(0,2,1),(0,2,2),(0,2,3)…(0,2, 𝑘2),……(0,k*,1),(0,k*,2),(0,k*,3)…(0,k*,𝑘𝑘∗), 

(0,1,1,1,1),(0,1,1,1,2)…(0,1,1,1, 𝑘′1),(0,1,1,2,1),(0,1,1,2,2)…(0,1,1,2,𝑘′1),(0,1,1,3,1)...(0,1,1,3,𝑘′1)…(0,1,1,𝑘1,1)

…(0,1,1,𝑘1, 𝑘′1),(0,1,2,1,1),(0,1,2,1,2)…(0,1,2,1, 𝑘′2),(0,1,2,2,1),(0,1,2,2,2)…(0,1,2,2,𝑘′2),(0,1,2,3,1)...(0,1,2,3,

𝑘′2)…(0,1,2,𝑘2,1)…(0,1,2,𝑘2, 𝑘′2),(0,1,3,1,1)…(0,1,3,𝑘3, 𝑘′3)…(0,1,k*,1,1),…,(0,1,k*,𝑘𝑘∗, 𝑘′𝑘∗),(0,2,1,1,1),(0,2

,1,1,2)…(0,2,k*,𝑘𝑘∗,𝑘′𝑘∗),(0,3,1,1,1)…(0,3,k*,𝑘𝑘∗𝑘𝑘∗),(0,4,1,1,1)…(0,4,k*,𝑘𝑘∗𝑘′𝑘∗)…(0,M-1,1,1,1)…          

(0,M-1,k*,𝑘𝑘∗, 𝑘′𝑘∗)). . (3)                                                                                                                                               

The vector 𝑛 is of type 1x[𝑀  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖] and is given in a similar manner as follows 

𝑛=(n,0,1,1,1),(n,0,1,1,2)…(n,0,1,1, 𝑘′1),(n,0,1,2,1)…(n,0,1,2,𝑘′1)…(n,0,k*,1,1)…(n,0,k*,𝑘𝑘∗, 𝑘′𝑘∗),(n,1,1,1,1)…     

(n,1,k*,𝑘𝑘∗,𝑘′𝑘∗),(n,2,1,1,1)...(n,2,k*,𝑘𝑘∗,𝑘′𝑘∗)…(n,M-1,1,1,1),(n,M-1,1,1,2)…(n,M-1,k*,𝑘𝑘∗, 𝑘′𝑘∗)).               (4)      

The matrices𝐵1𝑎𝑛𝑑 𝐴1 have negative diagonal elements, they are of orders [ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑀 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖] and 

[𝑀  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖] respectively and their off diagonal are non-negative.                                                                                                                                         

The matrices  𝐴0 𝑎𝑛𝑑𝐴2 have nonnegative elements and are of order [ 𝑀  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   . The matrices 𝐵0  𝑎𝑛𝑑 𝐵2   

have non-negative elements and are of types [ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑀 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖] x [ 𝑀  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖  ]   and                         

[ 𝑀  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   x [ 𝑘𝑖

𝑘∗
𝑖=1 + (𝑀 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖]. Component matrices of 𝐴𝑖  𝑎𝑛𝑑 𝐵𝑖for i=0, 1, 2 are defined 

below. Let ⊕ 𝑎𝑛𝑑 ⨂ denote the Kronecker sum and Kronecker product. 

Let 𝒬𝑖
′=𝐷0

𝑖  ⊕ 𝑆0
𝑖  + (𝑄1)𝑖 ,𝑖𝐼𝑘𝑖𝑘′𝑖

 = (𝐷0
𝑖⨂𝐼𝑘′𝑖 ) + ( 𝐼𝑘𝑖

⨂𝑆0
𝑖) + (𝑄1)𝑖 ,𝑖𝐼𝑘𝑖𝑘′𝑖

 for 1 ≤ i ≤ k*                 (5)                                                                

where I indicates the identity matrices of orders given in the suffixes,  𝒬𝑖
′  is of order 𝑘𝑖𝑘′𝑖  and the last term is a 

diagonal matrix of order  𝑘𝑖𝑘′𝑖  . Considering the stationary probability starting vectors of BMAP and of BMSP 

for the change of environment the following matrix Ω of order  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖is defined which is concerned with 

change of environment during arrival and service time. 

  Ω=

 
 
 
 
 

𝚀′1 𝛺1,2 𝛺1,3 ⋯ 𝛺1,𝑘∗

𝛺2,1 𝚀′2 𝛺2,3 ⋯ 𝛺2,𝑘∗

𝛺3,1 𝛺3,2 𝚀′3 ⋯ 𝛺3,𝑘∗

⋮ ⋮ ⋮ ⋱ ⋮
𝛺𝑘∗,1 𝛺𝑘∗,2 𝛺𝑘∗,3 ⋯ 𝚀′𝑘∗  

 
 
 
 

                                                                                                          (6) 

where   𝛺𝑖 ,𝑗  is a rectangular matrix of type  𝑘𝑖𝑘′𝑖  x 𝑘𝑗𝑘′𝑗 and all its rows are equal to  (𝑄1)𝑖 ,𝑗  (𝜑𝑗  ⨂ 𝜙𝑗 ) for i ≠ j ,                       

1 ≤ i, j ≤ k*.The matrix of arrival rates of n customers corresponding to the arrival in BMAP in the environment 

i is 𝐷𝑛
𝑖  which is a matrix of order 𝑘𝑖with non-negative elements for 1 ≤ n ≤ 𝑀𝑖  and 𝐷𝑛

𝑖  = 0 matrix for n > 𝑀𝑖  for 

1 ≤ i ≤ k*.                                                                                                                                                              (7) 
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The matrix of service rates of n customers corresponding to the service in BMSP in the environment i is 𝑆𝑛
𝑖  

which is of order 𝑘′𝑖with non-negative elements for 1 ≤ n ≤ 𝑁𝑖  and 𝑆𝑛
𝑖  = 0 matrix for n > 𝑁𝑖  for 1 ≤ i ≤ k*.  (8)                                            

Let 𝛬𝑛   = 

 
 
 
 
 
 
𝐷𝑛

1 ⊗ 𝐼𝑘′1 0 0 ⋯ 0

0 𝐷𝑛
2 ⊗ 𝐼𝑘′2 0 ⋯ 0

0 0 𝐷𝑛
3 ⊗ 𝐼𝑘′3 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐷𝑛

𝑘∗ ⊗ 𝐼𝑘′𝑘∗ 
 
 
 
 
 

 for 1 ≤ n ≤ M                         (9)                                                 

In (9) 𝛬𝑛  is a square matrix of order  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖;  𝐷𝑛

𝑗
⊗ 𝐼𝑘′𝑗 is a square matrix of order 𝑘𝑗𝑘′𝑗  for 1 ≤ j ≤ k* and 𝐷𝑛

𝑗
 

=0 matrix for n > 𝑀𝑗 .The (i, j) component 0 appearing in (9) is a block zero matrix of type 𝑘𝑖𝑘′𝑖  x 𝑘𝑗𝑘′𝑗  .                                                  

Let 𝑈𝑛  =   

 
 
 
 
 
 
𝐼𝑘1

⊗ 𝑆𝑛
1 0 0 ⋯ 0

0 𝐼𝑘2
⊗ 𝑆𝑛

2 0 ⋯ 0

0 0 𝐼𝑘3
⊗ 𝑆𝑛

3 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑘𝑘∗

⊗ 𝑆𝑛
𝑘∗

 
 
 
 
 
 

 for 1 ≤ n ≤ N                                                   (10)                                                                                                  

In (10) 𝑈𝑛  is a square matrix of order  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖;  𝐼𝑘𝑗

⊗ 𝑆𝑛
𝑗
 is a square matrix of order 𝑘𝑗𝑘′𝑗  for 1 ≤ j ≤ k* and 0 

appearing as (i, j) component of (10) is a block zero rectangular matrix of type 𝑘𝑖𝑘′𝑖  x 𝑘𝑗𝑘′𝑗  .The matrix 𝐴𝑖  for i 

= 0,1,2 are as follows. 

𝐴0 =

 
 
 
 
 
 
 
 

𝛬𝑀 0 ⋯ 0 0 0
𝛬𝑀−1 𝛬𝑀 ⋯ 0 0 0
𝛬𝑀−2 𝛬𝑀−1 ⋯ 0 0 0
𝛬𝑀−3 𝛬𝑀−2 ⋱ 0 0 0

⋮ ⋮ ⋱ ⋱ ⋮ ⋮
𝛬3 𝛬4 ⋯ 𝛬𝑀 0 0
𝛬2 𝛬3 ⋯ 𝛬𝑀−1 𝛬𝑀 0
𝛬1 𝛬2 ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 

 
 
 
 
 
 
 

 (11)       

 

𝐴2 =

 
 
 
 
 
 
 
 
0 ⋯ 0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈2 𝑈1

0 ⋯ 0 0 𝑈𝑁 ⋯ 𝑈3 𝑈2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1

0 ⋯ 0 0 0 ⋯ 0 𝑈𝑁

0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 0  

 
 
 
 
 
 
 

 (12)

𝐴1 =

 
 
 
 
 
 
 
 
 
 
𝛺 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝑈1 𝛺 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 ⋯ 𝛬𝑀−3 𝛬𝑀−2

𝑈2 𝑈1 𝛺 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 ⋯ 𝛬𝑀−4 𝛬𝑀−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝛺 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1

0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈1 𝛺 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2

0 0 𝑈𝑁 ⋯ 𝑈2 𝑈1 𝛺 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝛺 𝛬1

0 0 0 ⋯ 0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈1 𝛺  
 
 
 
 
 
 
 
 
 

                           (13)                                              

For defining the matrices 𝐵𝑖  for i = 0,1,2 the following component matrices are required                                                                           

𝛬′𝑛   = 

 
 
 
 
 
𝐷𝑛

1 ⊗ 𝛽1 0 0 ⋯ 0

0 𝐷𝑛
2 ⊗ 𝛽2 0 ⋯ 0

0 0 𝐷𝑛
3 ⊗ 𝛽3 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐷𝑛

𝑘∗ ⊗ 𝛽𝑘∗ 
 
 
 
 

 for 1 ≤ n ≤ M                                                      (14)                                        

 𝛬′𝑛   is a rectangular matrix of type  (  𝑘𝑖)x  (𝑘𝑖𝑘′𝑖)
k∗
i=1   𝑘∗

𝑖=1  for 1 ≤ n ≤ M ; 𝐷𝑛
𝑖 ⊗ 𝛽𝑖  is a rectangular matrix of 

order 𝑘𝑖𝑥𝑘𝑖𝑘′𝑖  and 0 appearing as (i, j) component of (14) is a block zero rectangular matrix of type 𝑘𝑖  x 𝑘𝑗𝑘′𝑗 for 

1 ≤ i, j ≤ k*. Let    𝑉′𝑖 ,𝑛 =  𝐼𝑘𝑖
⊗ 𝑆𝑖 ,𝑛+1

′ e  for 1 ≤ n ≤ N -1 is a matrix of type 𝑘𝑖𝑘′𝑖  x 𝑘𝑖  for 1 ≤ i ≤ k* where 𝑆𝑖 ,𝑛
′  = 

 𝑆𝑗
𝑖𝑁

𝑗=𝑛  for 1 ≤ j ≤ N and let 

 𝑉𝑛  = 

 
 
 
 
𝑉′1,𝑛 0 0 ⋯ 0

0  𝑉′2,𝑛 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯  𝑉′𝑘∗,𝑛 

 
 
 
  for 1 ≤ n ≤ N-1.                                                                                       (15)              

This is a rectangular matrix of type (  𝑘𝑖𝑘′𝑖
𝑖=𝑘∗
𝑖=1 ) 𝑥   𝑘𝑖

𝑘∗
𝑖=1   and 0 appearing in the (i, j) component is a 

rectangular 0 matrix of type 𝑘𝑖𝑘′𝑖  x 𝑘𝑗  for 1 ≤ i, j ≤ k*.  
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Let U =

 
 
 
 
 
𝐼𝑘1

⊗ 𝑆1,1
′ e 0 0 ⋯ 0

0 𝐼𝑘2
⊗ 𝑆2,1

′ e 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑘1

⊗ 𝑆𝑘∗,1
′ e  

 
 
 
 

                                                                             (16)          

In (16), U is a rectangular matrix of type (  𝑘𝑖𝑘′𝑖
𝑖=𝑘∗
𝑖=1 ) 𝑥   𝑘𝑖

𝑘∗
𝑖=1   and 0 appearing in the (i, j) 

component is a rectangular 0 matrix of type 𝑘𝑖𝑘′𝑖  x 𝑘𝑗  for 1 ≤ i, j ≤ k*.  𝐼𝑘𝑖
 ⨂𝑆𝑖 ,𝑛

′  is a rectangular matrix of type 

𝑘𝑖𝑘′𝑖  𝑥 𝑘𝑖   for 1 ≤ i ≤ k*.The matrix 𝐵0   is same as that of 𝐴0 when 𝛬𝑀  in the first row of   𝐴0 is replaced by𝛬′𝑀 . 

The matrix  𝐵1 is given below. The matrix 𝐵2 is same as that of 𝐴2when the first block column with 0 is 

considered as  𝑘𝑖
𝑘∗
𝑖=1  columns block instead of  𝑘𝑖𝑘′𝑖

𝑘∗
𝑖=1 columns block of 𝐴2. To write 𝐵1the block for 0 is to 

be considered which has queue length, L= 0, 1, 2…M-1. When L = 0 there is only arrival process and no service 

process. The change in environment from i to j switches BMAP j version as started by its stationary probability 

vector in the new environment  for 1 ≤ i ≠ j, ≤ k*. When an arrival occurs and queue length becomes L in the 

environment i next arrival time starts and the service time starts with starting probability vector 𝛽𝑖  for 1 ≤ i ≤ k*. 

In the 0 when L =1, 2, …, M-1 all the processes  arrival, service and environment are active as in other blocks 𝑛 

for n > 0. Considering the change of environment switches on the BMAP as per stationary probability vector in 

the new environment when the queue is empty, the following matrix Ω’ of order  𝑘𝑖
𝑘∗
𝑖=1 is defined which is 

concerned with change of environment during arrival. 

  Ω’=

 
 
 
 
 

𝑇′1 𝛺′1,2 𝛺′1,3 ⋯ 𝛺′1,𝑘∗

𝛺′2,1 𝑇′2 𝛺′2,3 ⋯ 𝛺′2,𝑘∗

𝛺′3,1 𝛺′3,2 𝑇′3 ⋯ 𝛺′3,𝑘∗

⋮ ⋮ ⋮ ⋱ ⋮
𝛺′𝑘∗,1 𝛺′𝑘∗,2 𝛺′𝑘∗,3 ⋯ 𝑇′𝑘∗  

 
 
 
 

                                                                                                   (17)                                                                                                                 

Here 𝑇′𝑖= 𝐷0
𝑖 + (𝑄1)𝑖 ,𝑖𝐼𝑘𝑖

 and  𝛺′𝑖 ,𝑗  is a rectangular matrix of type  𝑘𝑖  x 𝑘𝑗 whose all rows are equal to (𝑄1)𝑖 ,𝑗  𝜑𝑗   

presenting the rates of changing to phases in the new environment for i ≠ j and 1 ≤ i, j ≤ k*. 

𝐵1 =  

 
 
 
 
 
 
 
 
 
 

𝛺′ 𝛬′1 𝛬′2 ⋯ 𝛬′𝑀−𝑁−2 𝛬′𝑀−𝑁−1 𝛬′𝑀−𝑁 ⋯ 𝛬′𝑀−2 𝛬′𝑀−1

𝑈 𝛺 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 ⋯ 𝛬𝑀−3 𝛬𝑀−2

𝑉1 𝑈1 𝛺 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 ⋯ 𝛬𝑀−4 𝛬𝑀−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑉𝑁−1 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝛺 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1

0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈1 𝛺 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2

0 0 𝑈𝑁 ⋯ 𝑈2 𝑈1 𝛺 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝛺 𝛬1

0 0 0 ⋯ 0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈1 𝛺  
 
 
 
 
 
 
 
 
 

        (18) 

 

 
The basic generator of the bulk queue which is concerned with only the arrival and service is a matrix of order 

[ 𝑀  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   given above in (19) where 𝒬𝐴

′ =𝐴0 +  𝐴1 + 𝐴2                       (20)                                                                                                                                                                                                                                                                                                                                                                                                                                

Its probability vector  w gives,  𝑤𝒬𝐴
′  =0 and w. e = 1                                               (21)                                                                                                                 

It is well known that a square matrix in which each row (after the first) has the elements of the previous row 

shifted cyclically one place right, is called a circulant matrix. It is very interesting to note that the matrix 𝒬𝐴
′    is 

a block circulant matrix where each block matrix is rotated one block to the right relative to the preceding block 

partition. In (19), the first block-row of type [  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   x[ 𝑀  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖  ]   is, 𝑊 = (𝛺 + 𝛬𝑀 , 𝛬1, 𝛬2 , 

…, 𝛬𝑀−𝑁−2,  𝛬𝑀−𝑁−1,  𝛬𝑀−𝑁 + 𝑈𝑁, …, 𝛬𝑀−2 + 𝑈2,  𝛬𝑀−1 + 𝑈1) which gives as the sum of the blocks  𝛺 +
𝛬𝑀+ 𝛬1+ 𝛬2 +…+𝛬𝑀−𝑁−2+ 𝛬𝑀−𝑁−1+𝛬𝑀−𝑁+𝑈𝑁+…+𝛬𝑀−2+𝑈2+ 𝛬𝑀−1+𝑈1= Ω’’ which is the 

matrix given by  
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   Ω’’=

 
 
 
 
 
𝚀′′1 𝛺1,2 𝛺1,3 ⋯ 𝛺1,𝑘∗

𝛺2,1 𝚀′′2 𝛺2,3 ⋯ 𝛺2,𝑘∗

𝛺3,1 𝛺3,2 𝚀′′3 ⋯ 𝛺3,𝑘∗

⋮ ⋮ ⋮ ⋱ ⋮
𝛺𝑘∗,1 𝛺𝑘∗,2 𝛺𝑘∗,3 ⋯ 𝚀′′𝑘∗  

 
 
 
 

                                                                                                         (22)              

where using (5) and (6), 𝑄’’𝑖  = (𝐷𝑖⨂𝐼𝑘′𝑖 ) + ( 𝐼𝑘𝑖
⨂Si) + (𝑄1)𝑖 ,𝑖𝐼𝑘𝑖𝑘′𝑖

 for 1 ≤ i ≤ k*.  The stationary probability 

vector of the basic generator given in (19) is required to get the stability condition. Consider the vector w = ( 

𝜋′1𝜑1 ⊗ 𝜙1, 𝜋′2𝜑2 ⊗ 𝜙2,…, 𝜋′𝑘∗𝜑𝑘∗ ⊗ 𝜙𝑘∗) where π’ = (𝜋′1 , 𝜋′2 , … , 𝜋′𝑘∗) is the stationary probability vector 

of the environment, 𝜑𝑖  𝑎𝑛𝑑 𝜙𝑖  are the stationary probability vectors of the i version BMAP and i version BMSP 

𝐷𝑖  and 𝑆𝑖respectively. It may be noted 𝜋′𝑖(𝜑𝑖 ⊗ 𝜙𝑖)[(𝐷𝑖⨂𝐼𝑘 ′
𝑖
) + ( 𝐼𝑘𝑖

⨂𝑆𝑖)] =0. This gives 𝜋′𝑖(𝜑𝑖 ⊗ 𝜙𝑖)𝑄’’𝑖  = 

𝜋′𝑖(𝑄1)𝑖 ,𝑖  (𝜑𝑖 ⊗ 𝜙𝑖) 𝐼  = 𝜋′𝑖(𝑄1)𝑖 ,𝑖  (𝜑𝑖 ⊗ 𝜙𝑖) for 1 ≤ i ≤ k*. Now the first column of the matrix multiplication 

of wΩ’’ is 𝜋′1(𝑄1)1,1𝜑1,1𝜙1,1 + 𝜋′2 (𝑄1)2,1𝜑11𝜙11[(𝜑2 ⊗ 𝜙2)𝑒] +.....+ 𝜋′𝑘∗ (𝑄1)𝑘∗,1𝜑11𝜙11[(𝜑𝑘∗ ⊗ 𝜙𝑘∗)]𝑒 = 0 

since (𝜑𝑖 ⊗ 𝜙𝑖)𝑒 = 1 and π′𝑄1=0. In a similar manner it can be seen that the first column block of wΩ’’ is 

𝜋′1(𝑄1)1,1𝜑1 ⊗ 𝜙1 + 𝜋′2 (𝑄1)2,1𝜑1 ⊗ 𝜙1[(𝜑2 ⊗ 𝜙2)𝑒] +.....+ 𝜋′𝑘∗ (𝑄1)𝑘∗,1𝜑1 ⊗ 𝜙1[(𝜑𝑘∗ ⊗ 𝜙𝑘∗)]𝑒 = 0 and i-

th column block is 𝜋′1(𝑄1)1,𝑖𝜑𝑖 ⊗ 𝜙𝑖[(𝜑1 ⊗ 𝜙1)𝑒] + 𝜋′2 (𝑄1)2,𝑖𝜑𝑖 ⊗ 𝜙𝑖[(𝜑2 ⊗ 𝜙2)𝑒] +.....+ 𝜋′𝑖  (𝑄1)𝑖 ,𝑖𝜑𝑖 ⊗

𝜙𝑖+ …+  𝜋′𝑘∗ (𝑄1)𝑘∗,𝑖𝜑𝑖 ⊗ 𝜙𝑖[(𝜑𝑘∗ ⊗ 𝜙𝑘∗)]𝑒= 0. This shows that 𝑤 𝛺 + 𝛬𝑀 + 𝑤𝛬1+ 𝑤𝛬2 +…+𝑤𝛬𝑀−𝑁−2 +
 𝑤𝛬𝑀−𝑁−1 + 𝑤𝛬𝑀−𝑁 + 𝑤𝑈𝑁+…+𝑤𝛬𝑀−2 + 𝑤𝑈2 +  𝑤𝛬𝑀−1 + 𝑤𝑈1= w Ω’’=0. So (w, w,…,w) .W= 0 = (w, w, 

….w) W’ where W’ is the transpose W. This shows (w,w...w) is the left eigen vector of  𝒬𝐴
′  and the 

corresponding probability vector is     w’ =  
𝑤

𝑀
,
𝑤

𝑀
,
𝑤

𝑀
, … . . ,

𝑤

𝑀
  where w is given by                                                  

w = ( 𝜋′1(𝜑1 ⊗ 𝜙1),  𝜋′2(𝜑2 ⊗ 𝜙2),……, 𝜋′𝑘∗(𝜑𝑘∗ ⊗ 𝜙𝑘∗) )                                 (23)                                                                               

Let 𝜑𝑖  = (𝜑𝑖  ,𝑗 ) and  𝜙𝑖  = (𝜙𝑖 ,𝑗 ) be the stationary probability components of the arrival and service processes. 

Neuts [5], gives the stability condition as, w′ 𝐴0 𝑒 < 𝑤′ 𝐴2 𝑒 where w is given by (23). Taking the sum                                     

cross diagonally in the  𝐴0 𝑎𝑛𝑑 𝐴2 matrices, it can be seen using (9) that                                                                                                

w’ 𝐴0 𝑒=
1

𝑀
 𝑤  𝑛𝛬𝑛

𝑀
𝑛=1  𝑒 = 

1

𝑀
    𝑛𝑘∗

𝑖=1 𝜋′𝑖(𝜑𝑖 ⊗ 𝜙𝑖)(𝐷𝑛
𝑖 ⊗ 𝐼𝑘 ′

𝑖
)𝑒 𝑀

𝑛=1   = 
1

𝑀
    𝑛𝑘∗

𝑖=1 𝜋′𝑖(𝜑𝑖𝐷𝑛
𝑖 𝑒 ⊗𝑀

𝑛=1

𝜙𝑖𝑒)    =
1

𝑀
    𝜋′𝑖  𝜑𝑖( 𝑛𝑀

𝑛=1 𝐷𝑛
𝑖 )𝑒 𝑘∗

𝑖=1   < 𝑤 ′𝐴2 𝑒 = 
1

𝑀
 𝑤  𝑛𝑈𝑛

𝑁
𝑛=1  𝑒 = 

1

𝑀
    𝑛𝑘∗

𝑖=1 𝜋′𝑖(𝜑𝑖 ⊗ 𝜙𝑖)(𝐼𝑘𝑖
 ⊗𝑁

𝑛=1

𝑆𝑛
𝑖  )𝑒    =

1

𝑀
    𝑛𝑘∗

𝑖=1 𝜋′𝑖(𝜑𝑖𝑒 ⊗ 𝜙𝑖𝑆𝑛
𝑖  𝑒) 𝑁

𝑛=1   = 
1

𝑀
   𝜋′𝑖𝜙𝑖( 𝑛𝑁

𝑛=1 𝑆𝑛
𝑖 )𝑒 𝑘∗

𝑖=1  . This gives the stability condition 

as  𝜋′𝑖  𝜑𝑖( 𝑛𝑀
𝑛=1 𝐷𝑛

𝑖 )𝑒𝑘∗
𝑖=1   <   𝜋′𝑖

𝑘∗
𝑖=1  𝜙𝑖  𝑛𝑁

𝑛=1 𝑆𝑛
𝑖  𝑒                                                                                    (24)                                                                                                     

The sum 𝜑𝑖  ( 𝑛𝑀
𝑛=1 𝐷𝑛

𝑖 )𝑒 and 𝜙𝑖  𝑛𝑁
𝑛=1 𝑆𝑛

𝑖  𝑒 are known as the fundamental rates or the stationary rates of 

arrival / service  of the BMAP/ BMSP  processes corresponding to the environment i for 1 ≤ i ≤ k*. This result 

(24) is the stability condition for the random environment BMAP/BMSP/1 queue with random environment 

where maximum arrival size is greater than the maximum service size. When (24) is satisfied, the stationary 

distribution of the queue length exists Neuts [5]. Let π(0, i, j) : for 1 ≤ i ≤ k* 1 ≤ j ≤ 𝑘𝑖);  π(0, k, i, j, j’) ; for 1 ≤ 

k ≤ M-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 𝑘′𝑖     and π(n, k, i, j, j’): for 0 ≤ k ≤ M-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 𝑘′𝑖  
and n ≥ 1 be the stationary probability vectors of Markov chain X(t) states in (1) for this model. 

 Let 𝜋0=(π(0,1,1),π(0,1,2)…π(0,1,𝑘1),π(0,2,1),π(0,2,2)…π(0,2,𝑘2)…π(0,k*,1),π(0,k*,2)…π(0,k*,𝑘𝑘∗),        

π(0,1,1,1,1),π(0,1,1,1,2)…π(0,1,1,𝑘1, 𝑘′1),π(0,1,2,1,1),π(0,1,2,1,2)…π(0,1,2,𝑘2, 𝑘′2),π(0,1,3,1,1),π(0,1,3,1,2)… 

π(0,1,3,𝑘2 , 𝑘′2)…π(0,1,k*,1,1),π(0,1,k*,1,2)…π(0,1,k*,𝑘𝑘∗, 𝑘′𝑘∗),π(0,2,1,1,1)…π(0,2,k*,𝑘𝑘∗ , 𝑘′𝑘∗)…        

π(0,M-1,1,1,1),π(0,M-1,1,1,2)…π(0,M-1,k*,𝑘𝑘∗ , 𝑘′𝑘∗)) be a vector of type 1x[ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑀 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖].                                       

Let 𝜋𝑛=(π(n,0,1,1,1),π(n,0,1,1,2)…π(n,0,1,𝑘1, 𝑘′1),π(n,0,2,1,1),π(n,0,2,1,2)…π(n,0,2,𝑘2, 𝑘′2),π(n,0,3,1,1),                

π(n,0,3,1,2)…π(n,0,3,𝑘3 , 𝑘′3)…π(n,0,k*,1,1),π(n,0,k*,1,2)…π(n,0,k*,𝑘𝑘∗, 𝑘′𝑘∗),π(n,1,1,1,1),π(n,1,1,1,2)… 

π(n,1,1,𝑘1 , 𝑘′1),π(n,1,2,1,1),π(n,1,2,1,2)…π(n,1,2,𝑘2, 𝑘′2),π(n,1,3,1,1),π(n,1,3,1,2)…π(n,1,3,𝑘3, 𝑘′3)…π(n,1,k*,1

,1),π(n,1,k*,1,2)…π(n,1,k*,𝑘𝑘∗, 𝑘′𝑘∗),π(n,2,1,1,1)…π(n,2,k*,𝑘𝑘∗ , 𝑘′𝑘∗),π(n,3,1,1,1)…π(n,3,k*,𝑘𝑘∗, 𝑘′𝑘∗)… 

π(n,M-1,1,1,1),π(n,M-1,1,1,2)…π(n,M-1,k*,𝑘𝑘∗ , 𝑘′𝑘∗)) be a vector of type 1x[𝑀  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖].   The stationary 

probability vector 𝜋 = (𝜋0 , 𝜋1 , 𝜋3, … ) satisfies the equations 𝜋𝑄𝐴=0 and πe=1. (25)                                                                                                                                                                                                                                                                                                                            

From (25), it can be seen 𝜋0𝐵1 + 𝜋1𝐵2=0.                               (26)                                                                                               

 𝜋0𝐵0+𝜋1𝐴1+𝜋2𝐴2 = 0                                                       (27)                                                                                                                                                                                                                                                                                                                         

𝜋𝑛−1𝐴0+𝜋𝑛𝐴1+𝜋𝑛+1𝐴2 = 0, for n ≥ 2.                              (28)                                                                                                                                                                                                                                                                                                

Introducing the rate matrix R as the minimal non-negative solution of the non-linear matrix equation                                              

𝐴0+R𝐴1+𝑅2𝐴2=0,                                                              (29)                                                                                                                                                                                                                                                                                                                                                           

it can be proved (Neuts [5]) that 𝜋𝑛   satisfies the following. 𝜋𝑛  = 𝜋1 𝑅
𝑛−1    for n ≥ 2.      (30)                                                                                                                                                                                                                                                               

Using (26),  𝜋0 satisfies  𝜋0  = 𝜋1𝐵2(−𝐵1)−1                   (31)                                                                                                                                                                                                                                                                                                                                                 

So using (27) and (31) and (30) the vector  𝜋1 can be calculated up to multiplicative constant since 𝜋1 satisfies 

the equation   𝜋1 [𝐵2 −𝐵1 
−1𝐵0 + 𝐴1 + 𝑅𝐴2] =0.                (32)                                                                                                                                                                                                                                                                                                                                                                                                         

Using (31) and (30) it can be seen that  𝜋1[𝐵2(−𝐵1)−1e+(I-R)−1𝑒]  = 1.                                       (33)                    
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Replacing the first column of the matrix multiplier of   𝜋1 in equation (32), by the column vector multiplier of 

𝜋1 in (33), a matrix which is invertible may be obtained. The first row of the inverse of that same matrix is 𝜋1 

and this gives along with (31) and (30) all the stationary probabilities of the system.   The matrix R is iterated 

starting with 𝑅 0 = 0; and finding  𝑅 𝑛 + 1  = −𝐴0𝐴1
−1–𝑅2(𝑛)𝐴2𝐴1

−1, for n ≥ 0. The iteration may be 

terminated to get a solution of R at a norm level where   𝑅 𝑛 + 1 − 𝑅(𝑛 )   < ε

2.3. Performance Measures of the System   
(i) The probability of the queue length S = r > 0, P(S=r) can be seen as follows. For 1 ≤ r ≤ M-1, P(S =r) = 

   𝜋(0, 𝑟, 𝑖, 𝑗1, 𝑗2
𝑘′1
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 ). For r ≥ M, let n and k be non negative integers such that r = n M + k. Then                     

P(S=r) =   𝜋(𝑛, 𝑘, 𝑖, 𝑗1, 𝑗2
𝑘′𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 ) , where r = n M + k, n ≥ 1 and k ≥ 0.                                                (34)                                                            

(ii) The probability that the queue length is zero is P(S =0) =   𝜋 0, 𝑖, 𝑗 .  
𝑘𝑖
𝑗 =1

𝑘∗
𝑖=1                                          (35)                                                 

(iii) The expected queue level E(S), can be calculated. Using (35) and (34), it may be seen that              

E(S)= 𝑟∞
0 𝑃(𝑆 = 𝑟)=  0𝜋 0, 𝑖, 𝑗   

𝑘𝑖
𝑗 =1

𝑘∗
𝑖=1 +    𝑘𝜋(0, 𝑘, 𝑖, 𝑗1, 𝑗2

𝑘′𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 ) 𝑀−1

𝑘=1  

+     𝜋(𝑛, 𝑘, 𝑖, 𝑗1, 𝑗2
𝑘′𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 )(𝑛𝑀 + 𝑘)𝑀−1

𝑘=0
∞
𝑛=1                                                               

=    𝑘𝜋(0, 𝑘, 𝑖, 𝑗1, 𝑗2
𝑘′𝑖
𝑗2=1

𝑘1
𝑗1=1

𝑘∗
𝑖=1 ) + 𝑀−1

𝑘=1  𝜋𝑛
∞
𝑛=1 .(Mn…Mn,Mn+1,…Mn+1,Mn+2,…Mn+2,…Mn+M-1,… 

Mn+M-1)= 𝑘    𝜋(0, 𝑘 , 𝑖 , 𝑗 1, 𝑗 2
𝑘′𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 ) + 𝑀−1

𝑘=1 M 𝑛𝜋𝑛
∞
𝑛=1 𝑒+𝜋1( 𝐼 − 𝑅)−1𝜉.                                                         

Here ξ= 0, … 0,1, … ,1,2, … ,2, … , 𝑀 − 1, … , 𝑀 − 1 ′  is of type [( 𝑘𝑖𝑘′𝑖)
𝑘∗
𝑖=1 M]x1 column vector                                                                                                                

in which consecutively ( 𝑘𝑖𝑘′𝑖)
𝑘∗
𝑖=1  times 0,1,2,3..,M-1 appear. Let it be called ξ’ when 0 appears 

( 𝑘 𝑖 )𝑘∗
𝑖=1 times and others in that order appear ( 𝑘𝑖𝑘′𝑖)

𝑘∗
𝑖=1  times. Then                                                                               

E(S)= 𝜋0ξ’+  𝜋1( 𝐼 − 𝑅)−1𝜉 + 𝑀𝜋1(𝐼 − 𝑅 )−2𝑒

(iv)Variance of S can be derived. Let η be column vector η=[0, . . ,0, 12, … 12 22, . . , 22, …   𝑀 − 1)2, … , (𝑀 − 1)2 ′ 
of type [( 𝑘𝑖𝑘′𝑖)

𝑘∗
𝑖=1 M]x1in which consecutively ( 𝑘𝑖𝑘′𝑖)

𝑘∗
𝑖=1  times squares of 0,1,2,3.., M-1 appear. Let it be 

called η’ when 0 appears ( 𝑘𝑖)
𝑘∗
𝑖=1  times and others in the same manner as in η appear (  𝑘𝑖𝑘′𝑖)

𝑘∗
𝑖=1  times. Then 

E(𝑆2)= 𝑟2∞
0 𝑃(𝑆 = 𝑟)=  0𝜋 0, 𝑖, 𝑗   

𝑘𝑖
𝑗=1

𝑘∗
𝑖=1  +    𝜋(0, 𝑘, 𝑖, 𝑗1, 𝑗2

𝑘′𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 )𝑘2 𝑀−1

𝑘=1  

+     𝜋(𝑛, 𝑘, 𝑖, 𝑗1, 𝑗2
𝑘′𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 )(𝑛𝑀 + 𝑘)2𝑀−1

𝑘=0
∞
𝑛=1  =𝜋0η’ + 𝑀2  𝑛 𝑛 − 1 𝜋𝑛

∞
𝑛=1 𝑒 +  𝑛𝜋𝑛

∞
𝑛=1 𝑒 +

 𝜋𝑛𝜂
∞
𝑛=1  + 2M  𝑛 𝜋𝑛

∞
𝑛=1 𝜉.    

So, E(𝑆2)= 𝜋0η’ + 𝑀2[𝜋1(𝐼 − 𝑅)−32𝑅 𝑒 + 𝜋1(𝐼 −  𝑅)−2𝑒] + 𝜋1(𝐼 − 𝑅)−1𝜂 + 2𝑀𝜋1(𝐼 − 𝑅)−2𝜉

VAR(S)=E(𝑆2) − [𝐸(𝑆)]2may be written from (36) and(37).  

 

III. MODEL (B): MAXIMUM ARRIVAL SIZE M < MAXIMUM SERVICE SIZE N 

 
The dual case of Model (A), namely the case, M < N is treated here. (When M =N both models are applicable 

and one can use any one of them.) The assumption (vii) of Model (A) is changed and all its other assumptions 

are retained.  

3.1.Assumption                                                                                                                                                                       

(vii) The maximum arrival size M= ma𝑥1≤𝑖≤𝑘∗𝑀𝑖  is less than the maximum service size                                           

N=ma𝑥1≤𝑖≤𝑘∗𝑁𝑖 .                                                                                                                                                                        

3.2.Analysis                                                                                                                                                                                                    
Since this model is dual, the analysis is similar to that of Model (A). The differences are noted below. The state 

space of the chain is as follows presented in a similar way. 

The state of the system of the continuous time Markov chain X (t) under consideration is presented as follows.                                                                                                                                                                                                  

X(t) = {(0, i, j) : for 1 ≤ i ≤ k* 1 ≤ j ≤ 𝑘𝑖)} U {(0, k, i, j, j’) ; for 1 ≤ k ≤ N-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 𝑘′𝑖}                        
U {(n, k, i, j, j’): for 0 ≤ k ≤ N-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 𝑘′𝑖  and n ≥ 1}. (38)                                                                                                                                                                                                                                                    

The chain is in the state (0, i, j) when the number of customers in the queue is 0, the environment state is i for                                

1 ≤ i ≤ k*and the arrival phase is j for 1 ≤ j ≤ 𝑘𝑖 . The chain is in the state (0, k, i, j, j’) when the number of 

customers is k for 1 ≤ k ≤ N-1, the environment state is i for 1 ≤ i ≤ k*, the arrival phase is j for 1 ≤ j ≤ 𝑘𝑖  and 

the service phase is j’ for 1 ≤ j’ ≤  𝑘′𝑖 . The chain is in the state (n, k, i, j, j’) when the number of customers in the 

queue is n N + k, for 0 ≤ k ≤ N-1 and 1 ≤ n < ∞, the environment state is i for 1 ≤ i ≤ k*, the arrival phase is j for 

1 ≤ j ≤ 𝑘𝑖  and the service phase is j’ for 1 ≤ j’ ≤ 𝑘′𝑖 . When the number of customers waiting in the system is r, 

then r is identified with (n, k) where r on division by N gives n as the quotient and k as the remainder. The 

infinitesimal generator 𝑄𝐵  of the model has the same block partitioned structure given in (4) for Model (A) but 

the inner matrices are of different orders.  
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     𝑄𝐵 =

 
 
 
 
 
 
 
𝐵′

1 𝐵′
0 0 0 . . . ⋯

𝐵′
2 𝐴′

1 𝐴′
0 0 . . . ⋯

0 𝐴′
2 𝐴′

1 𝐴′
0 0 . . ⋯

0 0 𝐴′
2 𝐴′

1 𝐴′
0 0 . ⋯

0 0 0 𝐴′
2 𝐴′

1 𝐴′
0 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 
 
 
 
 
 
 

                                                                                            (39)                                                                                                                                                                         

In (39) the states of the matrices are listed lexicographically as 0, 1, 2, 3, …. For partition purpose the zero states 

in the first two sets of equation (38) are combined. The vector 0 is of type                                                                 

1x[ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑁 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖]with                                         

0=((0,1,1),(0,1,2),(0,1,3)…(0,1, 𝑘1),(0,2,1),(0,2,2),(0,2,3)…(0,2, 𝑘2)…(0,k*,1),(0,k*,2),(0,k*,3)…(0,k*,𝑘𝑘∗), 

(0,1,1,1,1),(0,1,1,1,2)…(0,1,1,1, 𝑘′1),(0,1,1,2,1),(0,1,1,2,2)...(0,1,1,2,𝑘′1),(0,1,1,3,1)...(0,1,1,3,𝑘′1)…(0,1,1,𝑘1,1)

…(0,1,1,𝑘1, 𝑘′1),(0,1,2,1,1),(0,1,2,1,2)…(0,1,2,1, 𝑘′2),(0,1,2,2,1),(0,1,2,2,2)….(0,1,2,2,𝑘′2),(0,1,2,3,1)....(0,1,2,3,

𝑘′2)…(0,1,2,𝑘2,1)…(0,1,2,𝑘2, 𝑘′2),(0,1,3,1,1)…(0,1,3,𝑘3, 𝑘′3)…(0,1,k*,1,1),…,(0,1,k*,𝑘𝑘∗, 𝑘′𝑘∗),(0,2,1,1,1),(0,2,

1,1,2)…(0,2,k*,𝑘𝑘∗,𝑘′𝑘∗),(0,3,1,1,1)…(0,3,k*,𝑘𝑘∗𝑘𝑘∗),(0,4,1,1,1)…(0,4,k*,𝑘𝑘∗𝑘′𝑘∗)…(0,N-1,1,1,1)…                 

(0,N-1,k*,𝑘𝑘∗, 𝑘′𝑘∗)) and the vector 𝑛 is of type 1x[𝑁  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖] and is given in a similar manner as follows 

𝑛=(n,0,1,1,1),(n,0,1,1,2)...(n,0,1,1, 𝑘′1),(n,0,1,2,1)…(n,0,1,2,𝑘′1)…(n,0,k*,1,1)…(n,0,k*,𝑘𝑘∗, 𝑘′𝑘∗),(n,1,1,1,1)…     

(n,1,k*,𝑘𝑘∗,𝑘′𝑘∗),(n,2,1,1,1)...(n,2,k*,𝑘𝑘∗,𝑘′𝑘∗)…(n,N-1,1,1,1),(n,N-1,1,1,2)…(n,N-1,k*,𝑘𝑘∗, 𝑘′𝑘∗)).                    

The matrices𝐵′1𝑎𝑛𝑑 𝐴′1 have negative diagonal elements, they are of orders [ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑁 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖] and 

[𝑁  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖 ] respectively and their off diagonal elements are non-negative.                                                                                                                                         

The matrices  𝐴′0 𝑎𝑛𝑑𝐴′2 have nonnegative elements and are of order [ 𝑁  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   . The matrices 

𝐵′0 𝑎𝑛𝑑 𝐵′2   have non-negative elements and are of types [ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑁 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖] x [ 𝑁  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖  ]   

and [ 𝑁  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   x [ 𝑘𝑖

𝑘∗
𝑖=1 + (𝑁 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖] and they are given below. Using Model (A) for 

definitions of 𝛬𝑗  , 𝛬′𝑗 , 𝑈𝑗 , 𝑉𝑗    and U and letting Ω and Ω’ as in Model (A), the partitioning matrices are defined 

as follows. The matrix 𝐵′0is same as that of 𝐴′0  with first zero block row is of order                                            

[  𝑘𝑖
𝑘∗
𝑖=1 ] x[ 𝑁  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖]. The matrix 𝐵′2is same as that of 𝐴′2 except the first column block is of type                         

[ 𝑁  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ] x [  𝑘𝑖

𝑘∗
𝑖=1 ] and is (𝑈′𝑁 , 0, … .0)′ where 

 

𝑈′𝑁  = 

 
 
 
 
 
 
𝐼𝑘1

⊗ 𝑆𝑁
1 e 0 0 ⋯ 0

0 𝐼𝑘2
⊗  𝑆𝑁

2 𝑒 0 ⋯ 0

0 0 𝐼𝑘3
⊗  𝑆𝑁

3 𝑒 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑘𝑘∗

⊗ 𝑆𝑁
𝑘∗e  

 
 
 
 
 

                                                                   (40) 

 

𝐴′0 =

 
 
 
 
 
 
 
 

0 0 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0

𝛬𝑀 0 ⋯ 0 0 0 ⋯ 0

𝛬𝑀−1 𝛬𝑀 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
𝛬2 𝛬3 ⋯ 𝛬𝑀 0 0 ⋯ 0

𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 
 
 
 
 
 
 
 

                                                                                              (41) 

 

 𝐴′2 =

 
 
 
 
 
 
 
 
𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝑈3 𝑈2 𝑈1

0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈4 𝑈3 𝑈2

0 0 𝑈𝑁 ⋯ 𝑈5 𝑈4 𝑈3

0 0 0 ⋱ 𝑈6 𝑈5 𝑈4

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2

0 0 0 ⋯ 0 𝑈𝑁 𝑈𝑁−1

0 0 0 ⋯ 0 0 𝑈𝑁  
 
 
 
 
 
 
 

          (42)
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𝐴′1 =

 
 
 
 
 
 
 
 
 
 

Ω 𝛬1 𝛬2 ⋯ 𝛬𝑀 0 0 ⋯ 0 0

𝑈1 Ω 𝛬1 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 0

𝑈2 𝑈1 Ω ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ Ω 𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀

𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 Ω 𝛬1 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝑈𝑁−𝑀+1 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1 Ω ⋯ 𝛬𝑀−3 𝛬𝑀−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑈𝑁−2 𝑈𝑁−3 𝑈𝑁−4 ⋯ 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 𝑈𝑁−𝑀−2 ⋯ Ω 𝛬1

𝑈𝑁−1 𝑈𝑁−2 𝑈𝑁−3 ⋯ 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−1 ⋯ 𝑈1 Ω  
 
 
 
 
 
 
 
 
 

(43)                                                                                                                                                                                                                            

 𝐵′1 =

 
 
 
 
 
 
 
 
 
 

𝛺′ 𝛬′1 𝛬′2 ⋯ 𝛬′𝑀 0 0 ⋯ 0 0

𝑈 Ω 𝛬1 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 0

𝑉1 𝑈1 Ω ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑉𝑁−𝑀−2 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ Ω 𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀

𝑉𝑁−𝑀−1 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 Ω 𝛬1 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝑉𝑁−𝑀 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1 Ω ⋯ 𝛬𝑀−3 𝛬𝑀−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑉𝑁−3 𝑈𝑁−3 𝑈𝑁−4 ⋯ 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 𝑈𝑁−𝑀−2 ⋯ Ω 𝛬1

𝑉𝑁−2 𝑈𝑁−2 𝑈𝑁−3 ⋯ 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−1 ⋯ 𝑈1 Ω  
 
 
 
 
 
 
 
 
 

   (44)  

     

𝒬𝐵
′′ =   

 
 
 
 
 
 
 
 
 

𝛺 + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 ⋯ 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1

𝑈1 𝛺 + 𝑈𝑁 ⋯ 𝛬𝑀−2 + 𝑈𝑁−𝑀+2` 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀 ⋯ 𝑈3 𝑈2

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮ ⋮ ⋮⋮⋮ ⋮ ⋮
𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ 𝛺 + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 𝛬2 + 𝑈𝑁−2 ⋯ 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1

𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 𝛺 + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 ⋯ 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀

𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1 𝛺 + 𝑈𝑁 ⋯ 𝛬𝑀−2 + 𝑈𝑁−𝑀+2 𝛬𝑀−1 + 𝑈𝑁−𝑀+1

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮  ⋮ ⋮⋮⋮ ⋮ ⋮
𝛬2 + 𝑈𝑁−2 𝛬3 + 𝑈𝑁−3 ⋯ 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ 𝛺 + 𝑈𝑁 𝛬1 + 𝑈𝑁−1

𝛬1 + 𝑈𝑁−1 𝛬2 + 𝑈𝑁−2 ⋯ 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 𝛺 + 𝑈𝑁  
 
 
 
 
 
 
 
 

(45) 

 

  

The basic generator which is concerned with only the arrival and service is 𝑄𝐵
′′ =  𝐴′0 +  𝐴′1 + 𝐴′2. This is also 

block circulant. Using similar arguments given for Model (A) it can be seen that its probability vector is w’ = 

 
𝑤

𝑁
,
𝑤

𝑁
,
𝑤

𝑁
, … . . ,

𝑤

𝑁
  where w is given by (23) and the stability condition remains the same. Following the 

arguments given for Model (A), one can find the stationary probability vector for Model (B) also in matrix 

geometric form. All performance measures including expectation of customers waiting for service and its 

variance for Model (B) have the form as in Model (A) except M is replaced by N. 

 

 

IV. NUMERICAL ILLUSTRATION 
Numerical examples are presented for five cases, namely, (i) M=N=4; (ii) M=4,N=3 ; (iii) M=4, N=2; (iv) M=3, 

N=4and (v) M=2, N=4. There are two environments with generator 
−1 1

1 −1
 . For the case (i) M=N=4 the batch 

Markovian arrival and service processes (BMAP and BMSP) have representations given by {𝐷𝑛
𝑖 : 0 ≤n ≤ 4 and 

i=1, 2 } and {𝑆𝑛
𝑖 : 0 ≤ n ≤ 4 and i=1, 2}respectively where the BMAP arrival  matrices are for environment 1, 

𝐷0
1= 

−3 1 1

1 −4 2

3 1 −5

 ,   𝐷1
1= 

. 15 . 15 . 2

. 18 . 18 . 24

. 21 . 21 . 28

 , 𝐷2
1= 

. 09 . 09 . 12

. 09 . 09 . 12

. 06 . 06 . 08

 , 𝐷3
1= 

. 03 . 03 . 04

. 03 . 03 . 04

. 03 . 03 . 04

 , 𝐷4
1= 

. 03 . 03 . 04

0 0 0

0 0 0

  

and for environment 2, 𝐷0
2= 

−3 1 0

0 −4 2

3 0 −5

 , 𝐷1
2= 

. 48 . 48 . 24

. 4 . 4 . 2

. 4 . 4 . 2

 , 𝐷2
2= 

. 24 . 24 . 12

. 32 . 32 . 16

. 24 . 24 . 12

 , 

𝐷3
2= 

. 08 . 08 . 04

. 08 . 08 . 04

. 16 . 16 . 08

 , and 𝐷4
2= 

0 0 0

0 0 0

0 0 0

 . The service BMSP matrices are for environment 1,  𝑆0
1= 

−4 1

1 −5
 , 

𝑆1
1= 

. 6 . 9

. 96 1.44
 , 𝑆2

1= 
. 36 . 54

. 48 . 72
 , 𝑆3

1= 
. 12 . 18

. 16 . 24
 , and 𝑆4

1= 
. 12 . 18

0 0
  and for environment 2, 𝑆0

2= 
−4 1

2 −3
 , 

𝑆1
2= 

1.08 . 72

. 3 . 2
 , 𝑆3

2= 
. 18 . 12

. 06 . 24
  and 𝑆4

2= 
0 0

0 0
  The starting probability vectors of service processes for the two 

environments on arrival of customers when the queue is empty are 𝛽1=(.4, .6) and 𝛽2=(.6, .4). For the case (ii) 
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M=4, N=3 the above batch arrival and batch service rates (matrices) of case (i) are assumed except two service 

rates matrices which are replaced as 𝑆3
1= 

. 24 . 36

. 16 . 24
 , and 𝑆4

1= 
0 0

0 0
 . For the case (iii) M=4, N=2 the above 

batch arrival and batch service rates (matrices) of case (i) are assumed except the six service rates matrices 

which are assumed as 𝑆2
1= 

. 6 . 9

. 64 . 96
 , 𝑆2

2= 
. 72 . 48

. 3 . 2
 , 𝑆3

1=𝑆4
1=0 matrices and 𝑆3

2=𝑆4
2=0 matrices. For the case 

(iv) M=3, N=4 the above  batch arrival and batch service rates matrices of case (i) are assumed except two 

arrival rates matrices which are replaced as 𝐷3
1= 

. 06 . 06 . 08

. 03 . 03 . 04

. 03 . 03 . 04

 and 𝐷4
1= 

0 0 0

0 0 0

0 0 0

 . For the case (v) M=2, N=4 

the above batch arrival and batch service rates (matrices) of case (i) are assumed except the six arrival rates 

matrices which are assumed as 𝐷2
1= 

. 15 . 15 . 2

. 12 . 12 . 16

. 09 . 09 . 12

 , 𝐷2
2= 

. 32 . 32 . 16

. 4 . 4 . 2

. 4 . 4 . 2

 , 𝐷3
1=𝐷4

1=0 matrices and 𝐷3
2=𝐷4

2=0 

matrices. The partitioned matrices are of order 48, the rate matrix R is of order 48 and fifteen iterations are 

performed to evaluate R matrix. The results obtained for various performance measures are tabulated in table 1. 

Queue length probabilities and the probabilities of batch sizes are estimated. These probabilities and expected 

queue lengths show variations depending on arrival, service rates and batches of arrival and service sizes. The 

figures (1) and (2) present the probabilities of various levels and blocks.                                                                                                                                                                 

 

Table 1. Results Obtained for the Five Cases. 

  M=4=N M=4,N=3 M=4,N=2 M=3,N=4 M=2,N=4 

P(S=0) 0.380758062 0.377246667 0.348733946 0.3849806 0.421313996 

P(S=1) 0.129820258 0.129530535 0.125595408 0.131199748 0.143065373 

P(S=2) 0.110187529 0.110124761 0.108434643 0.111159883 0.131171064 

P(S=3) 0.086386188 0.086540194 0.086908008 0.088387612 0.081273082 

π0e 0.707152037 0.703442157 0.669672005 0.715727843 0.776823515 

π1e 0.185713263 0.187070777 0.197490543 0.181491843 0.159704069 

π2e 0.067545585 0.068669501 0.078987097 0.06535554 0.045203898 

π3e 0.024943425 0.025583927 0.032001528 0.023784268 0.013006974 

π( n ≥ 4)e 0.01464569 0.015233637 0.021848827 0.013640506 0.005261545 

Arr rate 0.59475 0.59475 0.59475 0.588958333 0.540481481 

Ser rate 1.110243056 1.0921875 1.004108796 1.110243056 1.110243056 

Norm 4.82513E-05 5.40723E-05 0.000113132 4.49819E-05 1.49854E-05 

E(S) 2.621582695 2.656880644 2.992491652 2.559407301 2.030074169 

Std(S) 3.863770414 3.904750478 4.318346577 3.787733035 3.021600968 

 

 
Figure 1. Probabilities of Queue Lengths 
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Figure.2. The probabilities of customer blocks 

 

V. CONCLUSION 
Two BMAP/BMSP/1 bulk arrival and bulk service queues with random environment have been studied 

by identifying the maximum of the arrival and the service sizes and by grouping the customers as members of 

blocks of such maximum sizes. Matrix geometric results have been obtained by partitioning the infinitesimal 

generator by grouping of customers, environment state BMAP and BMSP phases together. The basic system 

generators of the queues are block circulant matrices which are explicitly presenting the stability condition in 

standard forms. Numerical results for bulk queue models are presented and discussed. Effects of variation of 

rates on expected queue length and on probabilities of queue lengths are exhibited. The decrease in arrival rates 

(so also increase in service rates) makes the convergence of R matrix faster which can be seen in the decrease of 

norm values. The standard deviations also decrease. The BMAP/BMSP/1 queue with random environment has 

number of applications. The process includes Exponential, Erlang, Hyper Exponential, Coxian distributions and 

PH distributions as special cases and the PH distribution is also a best approximation for a general distribution. 

Further the BMAP/BMSP/1 queue is a most general form almost equivalent to G/G/1 queue. The bulk arrival 

models because they have non-zero elements or blocks above the super diagonals in infinitesimal generators, 

they require for studies the decomposition methods with which queue length probabilities of the system are 

written in a recursive manner. Their applications are much limited compared to matrix geometric results. From 

the results obtained here, provided the maximum arrival and service sizes are not infinity, the most general 

model of the BMAP/BMSP/1 queue with random environment admits matrix geometric solution.   Further 

studies with block circulant basic generator system may produce interesting and useful results in inventory 

theory and finite storage models like dam theory. It is also noticed here that once the maximum arrival or 

service size increases, the order of the rate matrix increases proportionally. However the matrix geometric 

structure is retained and rates of convergence is not much affected. Inventory models with BMAP and BMSP 

assumptions may be focused for further study which may produce more general results. 
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